
AD-A249 417

RL-TR-91 -274, Vol I (of five)
Final Technical Report
November 1991

PENELOPE: AN ADA VERIFICATION
ENVIRONMENT, Developing Formally
Verified Ada Programs

ORA Corporation

RPR 2 9 1992

Sponsored by
Strategic Defense Initiative Office

APPROVED FORPUB/CPRELEASE, O/STRBUTON UNVL/MTEL2

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Strategic Defense Initiative Office or the U.S.
Government. 92-11269

Rome Laboratory
Air Force Systems Commanu

Griffiss Air Force Base, NY 13441-5700

92 4 27 1 iY

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

Although this report references limited documents listed below, no limited
information has been extracted:

RL-TR-91-274, Vol lIla, IlIb, IVa, and IVb, November 1991. Distribution
authorized to USGO agencies and their contractors; critical technology; Nov 91.

RL-TR-91-274, Vol I (of five) has been reviewed and is approved for
publication.

APPROVED:

JOHN C. FAUST
Project Engineer

FOR THE COMMANDER:

RAYMOND P. URTZ, JR.
Director
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed fron the Rome Laboratory
mailing list, or if the addressee is no longer employed by your oiganization, please
notify RL(C3AB) Griffiss AFB NY 13441-5701. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

PENELOPE: AN ADA VERIFICATION ENVIRONMENT,
Developing Formally Verified Ada Programs

Norman Ramsey

Contractor: ORA Corporation
Contract Number: F30602-86-C-0071
Effective Date of Contract: 19 Aug 86
Contract Expiration Date: 30 Sep 89
Short Title of Work: PENELOPE: AN ADA VERI-

FICATION ENVIRONMENT, Developing Formally Veri-
fied Ada Programs

Period of Work Covered: Aug 86 - Aug 89
Principal Investigator: Maureen Stillman

Phone: (607) 277-2020
RL Project Engineer: John C. Faust

Phone: (315) 330-3241

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense Initia-
tive Office of the Department of Defense and was monitored
by John C. Faust, RL/C3AB, Griffiss AFB 1344!-5700, under
contract F30602-86-C-0071.

REPORT DOCUMENTATION PAG OMB No. 0704-0188
P~Uc tfaU- budem fd diw Im ot 1Bu~ d . dtmwwup I la., pe Iemim i fluh *v"Ww ,rV r~ufi mm0w. 80M =a sm

gwMrn ,wt**Vwftw~w~ "-Pt onivgftlahtuo n r*tV98 SmviCO wvWh ruabfurc ionimear cle WV pW adbf
' d 4*vi ft .- i Obib CW v.gW taid.ig film r ttWasW~ Hw.Iu SmDhmra far knowna Oa "aRft 1215 Jdtw'

D"n MH'uW, SLAN 1204, A*rotor VA 2=-4= wid to We OffW c Me awge. w~ wid~dGPq~wUI RedflU1 Pc(070t019M. WaW1VW\ DC 2Ofl

1. AGENCY USE ONLY (Leave Bloak0 2 REPORT DATE a. REPORT TYPE AND DATES COVERED

November 1991 Final Aug 86 - Aug 89

4. TITLE AND SUBITLE 5. FUNDING NUMBERS
PENELOPE: AN ADA VERIFICATION ENVIRONMENT, C - F30602-86-C-0071
Developing Formally Verified Ada Program-z PE - 35167G/63223C

AUTHOR($) ________________
PR - 1070/B413

6. AUTOR(S)TA - 01103

Norman Ramsey WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &PERFORMING ORGANIZAION

ORA Corporation REPORT NUMBER

301A Dates Drive
Ithaca NY 14850-1313 ORA TR 17-3

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS (S) 10. SPONSORINGJMONITORING
Strategic Defense Initiative AGENCY REPORT NUMBER
Of fice, Of fice o f the Rome Laboratory (C3AB) RL-TR-91-274,
Secretary of Defense Griffiss AFB NY 13441-5700 Vol I (of five)
Wash DC 20301-7 100

11. SUPPLEMENTARY NOTES

RL Project Engineer: John C. Faust/C3AB/(315) 330-3241

1 2a DISTRIBUTIONAVAJLABIUTY STATEMENT 1b ITIUINCD

13. ABSTRACT (MM-200- wtxB)

Odyssey Research Associates has undertaken a study of the feasibility of developing
formafly verified Ada programs. We have designed a specification language for sequential Ada
programs. It is a member of the Larch family of specification languages. We have built a
prototype program editor that is intended to help programmers develop programs and proofs
from specifications, as advocated by Dijkstra and Gries (2,4). It contains predicate transfor-
mers, which compute wp (an approximation to the weakest precondition of a program), and it
generates verification conditions.

The semantics of the specification language and the definition of the predicate transfor-
mers are derivable from a denotational definition of sequential Ada. The predicate transf or-
mers can be proved sound with respect to these definitions by structural induction on programs.
The denotational-style definition of the predicate transformers is well suited to an implementa-
tion as an attribute grammar.

The program editor is designed to be used on program fragments, not just complete
programs. The next step in improving the prototype editor is to find ways to simplify the
intermediate values of wp so they can be used to guide the development of fragments into
programs.

14 SUBJECT TERMS is NUMBER OF' PAGES
Ada, Larch, I arch/Ada, Form2al M'ethods, Formal Specification, 48

Program Verification, Predicate Transformers, Ada Verification t6 PRICE CODE

tI. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURIY CLA31*SIFI0Ai ION 20. UMITATlON OF ABSI RACI
OF REPRT OF THIS PAGE OF ABSTRACT

UNLAS SIFIED L4NLASSIFIED 1UNCLASSIFIED JUL
NSN 75400-20 Stwcd Fa"11298V 4

Developing Formally Verified Ada Programs*

Norman Ramseyt
Odyssey Research Associates

October 10, 1988

Abstract

Odyssey Research Associates has undertaken a study of the feasi-
bility of developing formally verified Ada programs. We have designed
a specification language for sequential Ada programs. It is a member
of the Larch family of specification languages. We have built a pro-
totype program editor that is intended to help programmers develop
programs and proofs from specifications, as advocated by Dijkstra and
Gries [2,4]. It contains predicate transformers, which compute wp (an
approximation to the weakest precondition of a program), and it gen-
erates verificatirn conditions.

The semantics of the specification language and the definition of
the predicate transformers are derivable from a denotational definition
cf sequential Ada. The predicate transformers can be proved sound
with respect to these definitions by structural induction on programs.
The denotational-style definition of the predicate transformers is well
suited to an implementation as an attribute grammar.

The program editor is designed to be used on program fragments,
not just complete programs. The next step in improving the prototype
editor is to find ways to simplify the intermediate values of up so they
can be used to guide the development of fragments into programs.

Introduction

Writing formal specifications of programs and proving that programs meet

those specifications should help programmers develop more reliable software.

*This research has been sponsored by the USAF. Rome Air Development Center, under
contract number F30602-86-C-0071.

t Current address: Department of Computer Science. Princeton University, Princeton,

New Jersey 08544

• . , i i • I I I i I 1

Edsger Dijkstra and David Gries have stressed that a program should not
face verification as a hurdle after development, but should be developed
in such a way as to ensure its correctness [2,4]. One should begin with
a formal specification, and the development of the program and its proof
should follow from that specification. Gries, in his Science of Programming,
suggests ways to use a specification to guide the development of a program
and its proof.

We have undertaken to build software that will help programmers apply
the methods of formal development advocated by Gries and Dijkstra. The
software is designed to lead to formal verification tools with three properties:

" The tools should not just help to verify finished programs or to check
proofs of such programs, but should help programmers to develop ver-
ified programs.

" The tools should be based on sound, explicitly stated mathematics.

" The tools should support programming in a subset of Ada. since there
is a need for reliable software written in Ada.

Overview of results

We have designed a specification language, Larch/Ada-88, for sequential
Ada programs. We have implemented a prototype of an editor, Penelope.
which will help programmers develop and verify programs specified with
Larch/Ada-88. 1 The prototype implementation supports a subset of Ada
that is roughly "PASCAL with exceptions." We have completed some of the
mathematics that supports the Larch/Ada-88 definition and the Penelope
implementation.

Specification language The Larch/Ada-88 specification language is
part of the Larch family of two-tiered specification languages [5,19].2 The
two-tiered approach separates the specification of individual program mod-
ules from the specification of underlying abstractions. The Larch Shared

'The specification language was formerly known as PolyAnna. We have changed the
name of the language to Larch/Ada because it is a Larch interface language. We have
also given the name Penelope to our prototype verification system,

2 We use "specification" in the traditional sense of a statement of requirements. What
the Ada Language Reference calls "specifications" should be thought of as like -declara-
tions" in other programming languages.

Language is used to specify the underlying abstractions: for example, it
can be used to define the notions of array, list, set, bag, and so on. A
Larch Shared Language specification defines a set of terms (and some the-
orems about the terms); this set becomes the assertion language used in
Larch/Ada-88 specifications.

Larch/Ada-88 (henceforth Larch/Ada) is a Larch interface language; it
is used to specify Ada programs by attaching assertions at certain points,
like the entry and exit points of subprograms. The specification constructs
of Larch/Ada are called annotations, since most of them are derived from
similar constructs in Anna [10].

Implementation Most verification tools work in batch mode [7,3].
The user writes a program, supplies a specification and appropriate asser-
tions, and then submits it all to a verification condition generator. The
resulting verification conditions must be shown to hold. A verification con-
dition for a program is an assertion whose truth guarantees that the program
satisfies its specification.

When a programmer using a batch system makes a refinement or dis-
covers a mistake, the whole job must be resubmitted, and correct work may
have to be redone. Moreover, most batch systems cannot verify program
fragments. As practiced by Gries and Dijkstra, program development con-
sists largely in building up correct fragments by accretion, and in refining
existing fragments. Batch verification fits poorly with these techniques.

We have replaced the traditional batch verification system with a pro-
gram editor, which we call Penelope. Using Penelope, programmers can
examine weakest preconditions as they are computed and can use them to
guide program development. Program fragments can be proved correct, then
picked up and placed in larger contexts.

We have built the Penelope editor by using the Cornell Synthesizer Gen-
erator [17,16]. Penelope can be used to create and edit abstract syntax trees
that represent parts of an annotated Ada program. The interface is that
of a traditional syntax-directed editor in which the user may use a mouse
or an EMACS-like command set to manipulate trees. Penelope computes
weakest preconditions as attributes of the nodes of the syntax tree. 3 At-
tribute evaluation is incremental: that is, every time the user changes the "

tree, weakest preconditions are recomputed where necessary, and the new

'3Actually, as in Gries [4], the system works with an approximation to the weakest
precondition, called wp.

F

-Dist

preconditions are available for display. When certain Ada constructs are
used, Penelope generates a verification condition; typically one verification
condition is generated for each subprogram and one for each loop.

A user of Penelope begins by writing down a formal specification of an
Ada subprogram using Larch/Ada. (The formal specification takes the form
of an Ada "specification" augmented with subprogram annotations.) He or
she then builds the subprogram body, working backwards as described by
Gries [4]. Penelope can be instructed to display weakest preconditions at any
point, and also to display any verification conditions that may be generated.
The user can alter the program and immediately observe the effects on
preconditions and verification conditions, since the recomputation of wp and
of verification conditions is incremental and automatic. (The preconditions
and verification conditions are simplified somewhat before being presented
to the user.)

The verification conditions are sentences in pure logic; their statement
is independent of program context. If they can be shown to hold, the pro-
gram containing them satisfies its specification. Penelope contains a proving
component that can be used to prove facts about integers, Booleans, and
Ada types like arrays and records. The proving component is primitive; the
proof of a program like binary search takes up many pages.

Formal foundations The formal foundation of Larch/Ada has two
parts, one dealing with assertions and another dealing with annotations.
The assertion part covers the semantics of the Larch/Ada assertion language
as defined using Larch Shared Language specifications. This semantics is
determined entirely by the semantics of the Larch Shared Language, and
is therefore independent of Ada. The assertion part also covers the formal
specification (using the Larch Shared Language) of Ada's data types.

The annotation part connects the execution semantics of sequential Ada
with the annotations of Ada programs defined by Larch/Ada. The Penelope
editor's weakest precondition computations are based on a formal statement
of predicate transformers. The predicate transformers define a function from
a Larch/Ada specification and an annotated Ada program to a set of verifi-
cation conditions. The transformers are based on a continuation semantics
for the sequential part of Ada. As part of this work, Polak [14] has shown
how to establish a formal connection between a continuation semantics and
predicate transformers. To define the predicate transformers, he lets the

denotation of a program be a function on terms of the Larch/Ada assertion
language.

Larch/Ada

Two-tiered specifications In the two-tiered system of specification, the
shared language component is used to define all the abstractions used in
specification and verification. For example, in an arbitrary-precision arith-
metic package, the shared language part of the specification would define
what we mean by integer and by addition. One might implement arbitrary-
precision arithmetic using the idea of registers of arbitrary length. The
shared language would be used to define what we mean by a register and its
length.

The interface language part of a specification is used to state what a pro-
gram does in terms of the abstractions defined in the shared language part.
The interface language part of the arbitrary-precision arithmetic package
would show which subprograms perform what operations on the data, and
would state that overflow never occurs.

Using the two-tiered system, a designer can keep the unpleasant details
introduced by the programming language isolated in the interface language
comronent. while doing the real intellectual work of specification in the
-ha ai. uage component. It is ,)ossible to use -;w:. Area language to say

-,at is meant by, for examn:,e. a ;tack or ', ,_,ected graph, without
getting bogged down in details of exceptional conditi.,ns or of representatioih.

The shared language part of a specification defines the assertion lan-
guage used in the interface language part of the specification. Formulas in
this assertion language are formulas in first-order predicate logic. When we
attempt to prove that an implementation satisfies its specification, we first
apply the predicate transformers, which are based ,n the definition of Ada.
to a program and its specification. The predicate transformers produce a
verification condition, which is a sentence in the assertion language. The
proof of the - rification condition needs to refer only to the shared language
part of the specification: no further reference to the definition of Ada is
required. Since the assertion language is really a particular formulation of
first-order logic, checking the correctness of the proofs of verification condi-
tions is straightforward.

Languages in the two-tiered system Three languages are impor-
tant in the two-tiered system of specification. The Larch Shared Language
enables users to write formal specifications of useful abstractions. It is a
single language, used to write specifications. The Larch Shared Language
part of a specification consists of one or more traits, each one of which may
specify several abstractions. The shared language part of a specification
defines an assertion language, which is the language used to refer to the ab-
stractions. (A sentence stating that a stack is not empty would be a Boolean
term in the assertion language.) In general, every shared language specifica-
tion defines a different assertion language, although the different assertion
languages have much in common, since they are just different formulations
of first-order logic.

Larch/Ada is the language in wb.ch we write the interface language
part of a specification. This part uses annotations to specify the behavior
of a program. The annotations contain assertions, which are formulas in
the assertion language defined by the shared language part of the same
specification.

Description of Larch/Ada The assertion language defined by a partic-
ular shared-language specification is essentially a particular predicate calcu-
lus. We will describe the features of the Larch/Ada interface language, then
give an example.

The simplest Larch/Ada annotation is the embedded assertion. The as-
sertion is a formula in the current assertion language (defined by the shared
language part of the current specification). Free variables in the a.ssei ion
refer to program variables. Embedded assertions may be inserted at certain
control points in an implementation (i.e. between statements or between
declarations); they constrain the implementation to satisfy the assertion
whenever control reaches that point. In other words, the embedded asser-
tion says that, whenever control reaches it. if we substitute the actual values
of program variables into the assertion. it must denote truth. The embedded
assertion can be used only in an implementation, as a guido to the predicate
transformers; it cannot be used in specifications.

Larch/Ada's subprogram annotations are used both to constrain s,,bpro-
gram implementations, and to specify subprograms. The entry/exit kinds
are the in annotation, the out annotation, and the result annotation. Each
of these contains a single assertion. Thoy are used to constrain states on

6

entry to a subprogram, to constrain states on exit from a subprogram, and
to constrain the values a function might return.

Also among the subprogram annotations are several exception propaga-
tion annotations, which are used to say when exceptions may and may not
be raised, when exceptions must be raised, and what conditions must hold
when exceptions are raised. Finally there is the side effect annotation, which
is used to document side effects on or dependence on global variables.

Larch/Ada has two features which help make the annotation mechanism
more powerful. The first is the "IN variable." Within a subprogram, pa-
rameter names can be modified by IN to denote the value of the parameter
on entry to the subprogram. IN variables are essential in subprogram spec-
ifications. because we almost always need to refer to the initial values of
parameters. For example, here are specifications for some of the familiar
stack operations:

PROCEDURE push(s: IN OUT stack; x: element);
-- I WHERE
-- I OUT s = push(IN s,x);
-- END WHERE;

PROCEDURE pop(s: IN OUT stack);
-- I WHERE
-- I IN NOT is.empty(s);
-- I OUT s - pop(IN s);
-- I END WHERE;

The other enriching feature of Larch/Ada is a way to introduce "virtual
variables." '4 These variables are not used in writing specifications, but are
defined within implementations to help in proofs of correctness. Their values
don't actually affect the results of a computation. Larch/Ada allows the
user to declare virtual variables, to assign to them, and to use them in
annotations.

Finally, in support of data abstraction (packages with private types),
Larch/Ada enables the user to define abstraction functions using the Larch
Shared Language, and to associate these abstraction functions with Ada
types, using the based on aixnotation. Thus. a user writing an arbitrary-
precision arithmetic package might implement registers using arrays, and

4 These are called "ghost variables" by Gries and Dijkstra; the name "virtual variable"
is from Luckham [10].

7

... M ii m m l m i I I lI

Figure 1: Shared language specification of set operations (Wing [19])

SetOfE: trait
includes Integer
introduces
empty: - SI
add: SI. E -- SI
remove: SI, E - SI
has: SI, E -- Bool
isEmpty: SI - Bool

card: SI - Int
constrains empty, add, remove, has. isEmpty, card so that

SI generated by [empty, add]
for all [s: SI, e. el: E]
remove(empty, e) = empty
remove(add(s, e). el) =

ife = el then remove(s, el) else add(remove(s. el). e)
has(empty, e) = false
has(add(s, e), el) = if e = el then true else has(s. el)
isEmpty(empty) = true

isEmpty(add(s. e)) = false
card(empty) = 0

card(add(s,e)) = if has(s, e) then card(s) else 1 + card(s)

would then define an abstraction function from arrays to registers. The

proofs of correctness of implementations of abstract data types are as de-
scribed by Htoare [8]; the abstraction function is used to rewrite a specifica-

tion that was in terms of an abstract type to a new specification in terms of

a concrete type.

Using Larch/Ada As an example, we will present a Larch/Ada specifi-

cation for some set operations. Jeannette Wing used these operators in her
presentation of a Larch interface language for CLU [19]. As she did, we will

use a Larch Shared Language description of sets and set operations. The

trait describing these operations, called SetOfE. is shown in Ficurn 1.

=, , • mmm mm mm m mm mmmmmmmmm n mm mmm mm mm m m m mmmm m

We begin our example with the specification of a "choose" procedure
that selects a member of a set, removes it from the set, and returns it.
Since Ada functions may not have side effects on their parameters, we will
formulate the returned member as an OUT parameter:

-- I WITH SetOfE WITH [set FOR si, integer FOR el;
PROCEDURE choose (IN OUT s: set; i: OUT integer);
-- I WHERE
-- I IN NOT IsEmpty(s);
-- I OUT has(IN s, i) AND s = remove(IN s, i);

-- END WHERE;

The -- I WITH annotation specifies that SetOfE is the trait that defines
the notion of set and the operations IsEmpty, has, and remove. The IN an-
notation states that choose may be called only on nonempty sets. The
OUT annotation gives the relation between the initial and final values of the
set s and the final value of the integer i. (Notice that the final values
are specified by giving just the variable name, while the initial values are
specified by modifying the name by IN. In the IN annotation, all variables
are implicitly modified by IN.) Because no side effect annotation is present.
choose may not modify or read a.. v global variables.

Figure 2 shows a Larch/Ada si;,'cification for a set package. This package
specifies the same opera-ors as the similar example iM' Wing [19].

Formal foundation of Larch/Ada and Penelope

Connecting Ada to a denotational model Formal verification of Ada
programs must be based on a formal definition of the Ada language itself, but
at this time there is no official formal definition of Ada. We circumvent this
difficulty by providing a denotational model of a computing language Ada'.
and by considering Larch/Ada to be a specification language for Ada'. Ada
and Ada' have the same syntax, and we argue informally that for a restricted
class of programs and computations they have the same observable behavior.

We restrict Ada most by omitting from Ada' all features involving con-
currency. While there is widespread consensus on what are good methods
to model and specify sequential imperative languages. there is no similar
consensus on the utility of the various proposed methods of modeling and
specifying concurrent programs. We have omittod other features from Ada'
because they are machine-dependent (e.g. rep:oriat.on clauses) or because

.. . . .= ==-.=- ,==,,m m Im ill Il lll l I I [

Figure 2: Larch/Ada specification for a set package

--I WITH SetOfE WITH [integer FOR e];
PACKAGE sets IS

TYPE set IS PRIVATE; --I based on si;

FUNCTION pair(i, j : integer) RETURN set;
-- I WHERE
-- I RETURN add(add(empty, i), j);
--I END WHERE;

PROCEDURE union(sl : set; s2 : IN OUT set);

-- WHERE
-- I OUT (FORALL j::((has(s2, j)=has(IN sl, j))

-- I OR has(IN s2, j)));
-- I END WHERE;

PROCEDURE intersect(sl : set; s2 : IN OUT set);

-- I WHERE
-- I OUT (FORALL j::((has(s2, j)=has(IN sl, j))
--I AND has(IN s2, j)));
-- I END WHERE;

FUNCTION member(s : set; i : integer) RETURN boolean;
-- I WHERE
-- I RETURN has(s, i);

-- END WHERE;

FUNCTION size(s : set) RETURN integer;
-- I WHERE
-" I RETURN card(s);
-- END WHERE;

END sets;

10

it is not feasible to formalize them (e.g. the exact circumstances under which
storage-error is raised). Here is a partial list of omitted features:

" Concurrency

" Real number types

" Representation specifications and other implementation-dependent or
machine-dependent features

" Unchecked conversion and unchecked deallocation

" The predefined exceptions storage-error and numeric-error (i.e. we
consider that no execution of an Ada' program ever raises these excep-
tions), and computations that result in "undetected numeric overflow"

" Optimizations that cause execution of Ada statements in other than
the canonical order

" Parameter aliasing in procedure calls

" Any program called erroneous by the Ada reference manual

Some of these restrictions (e.g. that forbidding aliasing) can be enforced by
suitable static checks.

Although Ada' is not Ada, they are intended to be equivalent within our
area of interest, and we will not distinguish them in what follows.

Connecting the denotational model to Larch/Ada and the predi-
cate transformers The predicate transformers implemented in Penelope
are derived from a continuation semantics for Ada. The task of defining a
continuation semantics for Ada has been considerably simplified by two ex-
pedients. First, the static semantics of Ada is not part of the definition: the
definition assumes a suitably checked and attributed abstract syntax repre-
sentation of programs. Second, the semantics of the Ada types is not part of
the definition; instead, the semantics of Ada types is defined by Larch Shared
Language specifications. The technique used for deriving predicate trans-
formers from a denotational semantics is one developed by Polak [13,1.1].
The current definition of the predicate transformers used in Penelope does
not provide for proofs of termination.

Here we give an example that shows what we mean when we say that
Larch/Ada and Penelope are formally based. The example suggests how we

11

define the semantics of Larch/Ada and how we show that the VC generation
implemented in Penelope is sound.

Generating verification conditions involves manipulating a number of
different languages. Since a VC generator takes as input a program and
a specification, and produces as output an assertion (the verification con-
dition), the fundamental languages are the programming language P, the
specification language S, and the assertion language A. For simplicity, we
take the assertion language as fixed, although it is actually determined using
the shared language part of the specification.

The actual input to Penelope is a specification together with an an-
notated implementation; we will call that conglomerate V, and we define
projection functions that extract the relevant parts:

7r :1V - P Extract the implementation without annotations
a: V -, S Extract the specification

Then the VC generator is a function vcgen : V - A, and we wish to show
that vcgen is sound. i.e. whenever the verification condition vcgen(v) holds,
the program 7rv satisfies its specification av.

We need to consider the denotations of the various syntactic objects we
have been discussing. For simplicity, we'll let the denotation of a program
be a mapping from states to states (this makes sense even for a continuation
semantics if one considers whole programs). We'll call B the special Boolean
domain consisting of the two elements truth and falsehood (which we'll write
as t and f). If the set of states is X. we have

Hp : P - (X - X) A program denotes a state changer.
Ms : S - ((X - X) - B) A specification denotes a predicate on state changers.
,A : A - (X - B) An assertion denotes a predicate on states.

Intuitively, a program is a function from states to states, a specification
defines a predicate ("satisfaction") on programs. and an assertion defines a
predicate on states (also called "satisfaction"). A program p E P satisfies a
specification s E S if

(Mss)(Mpp) = t.

The semantics of the specification language can be defined in terms of
the semantics of the programming and assertion languages, Mp and M 4 .

provided we have a fixed (not necessarily finite) set of states X. If the spec-
ification language is a simple one that gives only entry and exit assertions.

12

i.e. S = A x A, then we can define

AMs(ai,a 2)p = Vx E X.Maiz =: AIa 2 (p),

where p = Mp(p) is a state transformer. The definition says that a program
satisfies its specification if, whenever the entry condition a, holds on entry
to the program, the exit condition a2 holds on exit from the program. (We
are using =* to denote mathematical implication.)

The semantics of Larch/Ada is defined in two steps: first, we define
a mapping from Larch/Ada to a simpler language in which a specification
consists of an entry condition, an exit condition for normal termination, and
exit conditions for termination by raising exceptions. In the second step we
define the semantics of the simpler language; this language is essentially
S = A x list A, and the definition of its semantics is very similar to that
just shown.

As the discussion above suggests, V is not really fundamental; we intro-
duced V to stand for the input to vcgen. If we have an (annotated program,
specification) pair v E V, we are really only interested in the projections 7rv
and av. The program satisfies its specification when

AMs(av)(Mp(7rv)) = true.

VC generation is sound if the truth of the verification condition guarantees
that the program satisfies its specification. The truth of a verification con-
dition must be independent of state, so the function vcgen is sound if, for
any v E V,

Vx E X(MA(vcgen(v))) => Ms(av)(Mp(irv)).

Polak [14] goes into more detail, giving a complete definition of vcgen for
a small programming larguage P. He describes a way of deriving vcgen from
the semantics of P and sketches a proof of soundness that uses structural
induction on programs. The techniques he describes are the same ones used
to define the semantics of Larch/Ada and to prove the soundness of the
predicate transformers implemented in Penelope.

The Penelope implementation

We are implementing tools that support research in formal verification us-
ing Larch/Ada. Of these, the most important is the Penelope editor, which

13

helps users develop verified programs. In the prototype, there is no support
for writing traits: every specification has the same shared language part, and
there is a fixed assertion language used for all specifications. The prototype
can be used to specify and prove Ada subprograms, provided those subpro-
grams use no global variables. We plan to extend the Penelope prototype
to read definitions of extensions to the assertion language. We plan to sup-
plement it with a tool that will help prove Penelope verification conditions.

Status of the implementation

Penelope is implemented using the Cornell synthesizer generator [17]. The
Cornell synthesizer generator accepts as input a description of an attribute
grammar and compiles this description into a syntax-directed editor which
can compute and display the values of attributes. The heart of this edi-
tor is an algorithm which, when the edited tree is changed, computes and
propagates the changes in attribute values [16].

We think of Penelope as having three components: predicate transforma-
tion. proving, and simplification. Predicate transformation is central. That
component reads and interprets the Larch/Ada annotations, computes wp,
and generates verification conditions. The user controls which intermediate
values of wp are displayed and which verification conditions are displayed.
The displayed values are updated every time the user changes his or her
program or specification.

The proving component is a sub-editor that enables the user to construct
proofs of the verification conditions, using a sequent calculus. The editor
presents a list of hypotheses and a goal. and the user designates an infer-
ence rule to apply. The application may generate subgoals. and the process
continues until the subgoals are reduced to axioms, which are automatically
recognized by the editor. The editor has built in a small number of proof
tactics: the user can designate one of these tactics instead of designating a
rule.

The simplification component is a set of functions that can be called
by the other two components. These functions make the preconditions and
verification conditions more readable. One function does this by rewriting:
terms like PAtrue are rewritten to P, and so on. Another function attempts
to find ways to substitute simpler terms for terms that are especially complex
or hard to read. Another performs arithmetic operations on integer literals.
Several functions manipulate the forms of terms in order to make other
operations easy; depending on circumstances, one may prefer P D (Q D

14

(R D S)) to P A Q A R D S, or vice versa. (We are using D to represent the
implication symbol in the assertion language.) Collectively, these functions
reduce the size of the verification conditions Penelope generates.

The currently supported subset of Ada We have imposed a number
of restrictions on programs editable with Penelope, as described earlier.
Concurrency, real number types, parameter aliasing, storage-error, and
some other features are forbidden. Here are the highlights of what Penelope
does with those programs it accepts:

" Subprograms may call predefined or user-defined subprograms; recur-
sion is supported.

" Arbitrary user-defined exceptions, raise statements, and exception
handlers are supported.

" Integer, Boolean, enumeration, array, and record types are supported.
The predefined Ada operators for these types are supported. (Subtyp-
ing is not supported.)

" All of the Ada control structures are supported except goto state-
ments, case statements, and for loops.

" Some static semantic checking is performed, including type checking

and overload resolution.

The current Penelope is limited in what it can prove. Many capabilities
which might be considered difficult have been investigated mathematically
but have not yet been implemented. These include:

" Proving that neither of the predefined exceptions constraint -error
and program-error is ever raised

" Proving that programs terminate

" Proving that programs are not erroneous

" Detecting potential aliasing and illegal order dependencies by suitable
static semantic checking

" Proving programs that define subtypes whose bounds are set dynam-
ically

* Proving programs that may raise or handle the predefined exceptions
constraint -error and program-error

15

The currently supported subset of Larch/Ada The current imple-
mentation of the Penelope editor supports most of Larch/Ada. The major
features that are missing are those associated with termination, global vari-
ables and side effects, and data abstraction. As noted earlier, there is no
support for writing traits in the Larch Shared Language. This means that
the shared language part of every specification is the same, and that there
is a single assertion language used for all Larch/Ada specifications. That
assertion language is restricted to terms describing integers, Booleans, ar-
rays, and records. (Enumeration literals are converted to integers during
predicate transformation.)

Future plans

Simplification The greatest weakness of the current Penelope editor is
that weakest preconditions and verification conditions are too hard to read.
The simplification component is good at reducing the bulk and complexity of
Boolean terms: most of the complexity in verification conditions comes from
arithmetic terms. Simplifying such terms is i ile next step in improving our
implementation. Rather than build an arithmetic simplifier from scratch, we
plan to connect an existing simplifier to the Penelope editor. The simplifier
that we plan to use is based on the Nelson-Oppen procedure for combining
decision procedures (12.151.

Extending Penelope In order to support data abstraction, we intend to
add packages and private types to Penelope's Ada subset. (Adding these
constructs is straightforward; the major difficulties involved in supporting
data abstraction arise in extending the assertion language, as discussed be-
low.) We may also add new control structures, in particular the case state-
ment and the for loop.

In the longer term. we plan to add support for proofs of termination and
for proofs of subprograms that have side effects on global variables.

Data Abstraction It is not possible to write readable formal specifica-
tions of large programs without taking advantage of data abstraction. Gen-
erating verification conditions for programs that use abstract data types is
not hard, but generating sound verification conditions for implementations
of abstract data types can be tricky. This is especially true in Ada. where
the abstraction constructs do not completely hide the representation.

16

It is also hard to simplify and prove verification conditions when speci-
fications refer to abstract data types. The essence of the difficulty is that.
when using data abstraction, the user must add new terms to the assertion
language. (These terms describe the new abstractions, like stacks, buffers,
registers, or whatever may be needed to specify a particular application.
They are introduced and defined by traits written in the Larch Shared Lan-
guage.) To be able to make effective use of the new terms, we must be able
to show that their introduction does not lead to any logical inconsistency.
We must also be able to extend the proving and simplification components
of Penelope to be able to handle the new terms.

We will begin studying data abstraction by making our assertion lan-
guage extensible. We will use a tiny subset of the Larch Shared Language,
a subset which will enable us to add to the assertion language new sort and
operator symbols. In particular, it will be possible to add abstract sorts and
abstraction functions to the assertion language. We will then allow users to

make assertions (without proof) involving the new symbols they have intro-
duced. In proofs of programs, these assertions will be treated like axioms.
We hope that, by studying the kinds of assertions users make, we will be
able to learn what methods of proof might help users prove programs that

use data abstraction.

Conclusions

Our efforts have been concentrated on defining Larch/Ada-88 and on build-
ing the Penelope prototype. Evaluation of Larch/Ada and Penelope must
await the completion of the prototype and experience with its use, but we
can draw some conclusions about the methods we have applied and about
the difficulty of the problems that remain.

We have developed a useful technique for deriving predicate transform-
ers, and we have developed a method for implementing the transformers
using an attribute grammar. We have some preliminary observations about
the results of attempting to mechanize Gries's and Dijkstra's methods of
program development. Finally, we believe we have learned what problems
need to be solved before a useful verification system can be built.

Implementing predicate transformers The denotational style of writ-
ing predicate transformers lends itself to a natural and efficient implementa-
tion of the transformers as an attribute grammar. Values in the transformer

17

definition map to attributes of the grammar, and meaning functions map to
the semantic equations that define the relationships among the attributes.
We can avoid implementing lambda-abstraction and beta-reduction for the
language of terms by using pairs of attributes to represent values of arrow
types.

Mechanizing formal development The biggest obstacle to learning
Gries's method of program development is the drudgery of computing wp.
This difficulty increases as the complexity of the programming language
increases; it would be unrealistic to expect to compute wp by hand for a
language like Ada. Fortunately, it is easy to mechanize the computation
of wp, provided a denotational-style definition of wp is available.

The problem with a mechanized computation of wp is that the resulting
preconditions quickly become too complicated to be understood by a human
being, at which point they can no longer be used to guide program devel-
opment, which is the whole point of Gries's method. We have yet to learn
whether mechanical simplifiers like the one described by Nelson and Oppen
can make the preconditions understandably simple. The problem doesn't
arise when wp is computed by hand, because in that case the programmer
constantly applies his or her knowledge of integers, sequences, Booleans. and
so forth, so that computation and simplification proceed simultaneously.

Open problems The Larch/Ada specifications we can write using Pene-
lope are limited by the fixed, non-extensible assertion language. (It is a
severe limit; for example, at this time we cannot introduce the factorial
function for use in a specification.) The programs we can prove using Pene-
lope are limited by the size of the weakest preconditions Penelope computes.
We believe that the most important problem remaining to be solved is the
one of being able to introduce new terms into an assertion language, while
simultaneously introducing methods of simplification and proof for those
terms. The Larch Shared Language provides a way of writing formal defini-
tions of new terms. We need to develop a formal representation of methods
of proof and simplification. Finally, we need to develop ways of showing
that the addition of new definitions introduces no logical inconsistency, and
ways of showing that the proof and simplification methods are consistent
with the definitions.

Related work

AFFIRM, built at USC-ISI, was the first verification system to use algebraic
specifications and a rewrite rule prover [11]. The Gypsy system was the first

verification system to handle a form of concurrency [7]. The Stanford Pas-

cal Verifier was the first verification system to handle a real programming

language [9]. The most important contribution of the Stanford Pascal Ver-

ifier project was probably the Nelson-Oppen method of combining decision
procedures (12].

The Anna project is an effort to introduce formal specification to Ada

programmers by providing specification constructs which can be checked at

run time [10). The aim of AVA project is to define a verifiable subset of Ada

and to give it a formal semantics using Boyer-Moore logic [18.1].

Acknowledgements

The work described herein was done at Odyssey Research Associates with
Wolfgang Polak. Carla Marceau, David Guaspari. C. Douglas Harper. and

Doug Weber. Anna provided large repository of specification constructs.
on which we drew heavily when designing Larch/Ada. The Anna group at

Stanford was forthcoming with suggestions about how formal verification of
Ada programs might proceed. John (;uttag helped us to understand Larch
and to explore how we might adapt Larch to Ada. In particular. he helped

us elucidate the issues that needed to be addressed in defining the semantics
of a Larch interface language. John Guttag and Steve Garland lent us their

theorem prover. 1p, which we used in or study of verification conditions

generated by Penelope.
David Guaspari and Wolfgang Polak helped me understand the formal

foundations of Larch/Ada and Penelope. and they corrected many errors in

earlier drafts of this paper.

References

[1] R. S. Boyer and J. S. Moore. "Proving Theorems about LISP Func-
tions," JACM 22. 1. 129-1-,-1.

[2] Edsger W. Dijkstra. The Discipline of Programming. Prentice-Hall.
1976.

19

[3] J. Crow. S. Jefferson. R. Lee, M. Meliar-Smith. J. Rushby,
R. Schwartz. R. Shostak. and F. von Henke. Preliminary Definition of
the revised SPECIAL specification language, SRI International. 19,R6.

[4] David Gries, The Science of Programming, Springer-Verlag, 1981.

[5] J. V. Guttag. J. J. Horning, and J. M. Wing, Larch in Five Easy
Pieces, DEC/SRC TR 5, July 1985.

[6] S. Garland. J. Guttag. and J. Staunstrup. "Verification of VLSI Cir-
cuits using LP". manuscript.

[7] D. I. Good, R. L. Akers, and L. M. Smith. Report on Qypsy 2.05.
Computational Logic Inc.. 1986.

[8] C. A. ft. Hoare, "Proof of Correctness of Data Representations." Acta
Informatica 1, pp 271-281 (1972).

[9] D. C. Luckham et al., Stanford Pascal Verifier User Manual. Report
No. STAN-CS-79-731. Stanford University, March 1979.

[10] D. C. Luckham et Lt., Anna: A Language for Annotating Ada Pro-
grams, Reference Manual. 1986.

[11] D.R. Musser. "Abstract Data Type Specifications in the AFFIRM Sys-
tem," in Proceedings of the Specifications of Reliable Software C'on-
ference. IEEE Computer Scociety (April 1979), 47-57.

[12] G. Nelson and D. C. Oppen. "Simplification by Cooperating Decision
Procedures". ACM Trans. Program. Lanq. Syst. 1. 2 (Oct. 1979). 245-
257.

[131 Wolfgang Polak, "Program Verification Based on Denotational Seman-
tics," POPL '81.

[14] Wolfgang Polak, "A Technique for Writing Predicate Transformers."
submitted to LICS '89.

[15] T. Redmond, Simplifier Description, Aerospace Technical Report
ATR-85 (8354)-8, Nov. 1985.

(161 Thomas Reps, Generating Language-Based Environments. MIT Press.
1984.

20

[17] Thomas Reps and Tim Teitelbaum, The Synthesizer Generator Ref-
erence Manual, Department of Computer Science, Cornell University,
1987.

[18] Michael K. Smith, "A Verifiable Ada," Formal Metheds Committee
Report, Ada Letters 8, 4 (July/August 1988), 136-142.

[19] J. M. Wing, "Writing Larch Interface Language Specifications," ACM
Trans. Program. Lang. Syst. 9. 1 (Jan. 1987), 1-24.

21

.1 il es ses nu -nb -.r
of Cooie;

2LIC >p 75
ATTNi: John C. Fiust

ORA CQj'PI)PA 'll

DL/D) VL1
T, cnrnicA Li'.,riry

rL~ i lIF i 1 Y 17)441-.7 -

A~f~ tf r i .~ tr -.)rhf,

c LI it ' ?nt-

j,-.2rl)tn I C t ti i l -

M I '; A1

3 ~ ~ ' rini

n t n-in

N3va 43r f 3 r - is eS j m ?'t ont -r1

aera i z' ir -n is/

Corani. CA H'

LJ A ~/Yr T1

A4 S.rJSCPT
IFFUJTT AFA 4 ~

f 4 TAC/DOA1

A3CigtPitro AFj '1 -H

A Tri D.4rny 'cCtlure

4 c C eL I F - C

4R)C /AAAI-? 1
ATTN: Mr Frarnktin Hutson
WAF-' 'IH 454;-_47

Wri qht-PFitterion AF, C 4 45437-t35

4 DC /IT zL 1
Wright-P~tttirson >45;43'

~ir F ar c '4uwr in sou r c,2 - La'
Tecnnir,31 .oc-.j-ints Cent -r
AF HRL/L 3-T 0

Wr i 4t-ritter;-)n 4547-

A U L/ L S~ =
2 L1; 147

jx at A i/rT; L1

L -A tt ii

3 FL' Cl LryV

u ilt -r A FS AL T11--.

I r mr v t r a ~ c tI

4u rt vi L t -L

X avy tectr1, j in t ic 2c tru 't'

C a ~nliing f' f ic r

Jivd I A i oric s ^Cen~ter

AZnli.3n3poLis

Techni-cat L ir i. r

an 0 41r

're cn ni c at L i j r ir' y 1

Cu r it tn cl - n 1,

N av j1 'o t wr i Ju i t c ch'

-~ ~ 4 c f ' .f.. y *

SC.)P J.. '4-id i t-ni s i L

-'lsrone ;ci nrif ic Info ^enttr
~ 'LL DocLJm9nts

Advisory S r)u : an t cr 3 Dev ic~

e w York -NY 1 14

L as ALtmos Nit ion it L ir itory
R eport L ibrar y

) mo sN "75.

AEDC Library
Tech Fi Les/M1S-1Y
Arnotd AF~k TN\ 173 3)

Comi'nlnerp Ul.i
A S H-PC A- C9?LI ecn Liu~
cqLdq 6I1)
Ft -iaj.chuca 4Z,~ 3.j

IJ74~ ;IGI=IT
Kepster Af' 34-4

rect: or % hr' Al y

12 I ' D ~L

Far T~ -t T'.. -0 -ir

Fort~~~7 *1Le'o-

A'TTN: D. ALLpy
Oly x 11

Ft M1ale M) .

r jrect~r

NSA/C S
wll DEyFSaCE

ATTN: Mr. war -. CLesh
Fort Gr orje n . "e e .

Director
14SAICS! 1

ATTN: 4r. leni einoucn

Fort 6-)rge 7. i,i-1, A) ,: -75C-* -

3 1
Pa -. 5 V I qe -oa

D I P 4

I ,_ S V 1 e :,)a -

;t '"ealp 7 "

Director

N 3 AL C -; l! : c', . --L, D

Fort ,;eor ce . e o .t 7. jj7

D,:) Com put r Ceit 1r

Fort oirr .le--e A2 55-,J

=3DIIv
'4ANSVCM AFi' va .1 7 - .-

3 D / IC1

DL-6

.. --C J m llI H l

FL 7 / ;7 C CH L zR A Y1
IL A4ISLJLL
,4ANSCO'* AF- 73-

TECHNICAL OEPC TS CENJTrl
MAIL D;00 Dl'-
!UP'LTN'7TON ~~
R4EDF04') MA. 1731

SD!I S -P1-- l M 1
A TT N: Cm Ir 'rij
The 0 9rnt.3on
Wash D'C 263iL-71i:*'

S D T1Q1 - f, - P A4

A T TN Cipt Johns,

Thea Detaiori

Wash U-C?::-7J

qD1 Techrnjci :-iform-ition Center

q A Fl / 1

14 3 C c V-)1
a 'r T ', t Co(cLynn

~o r, l..jy ,o t i ,L :-r
Los 5n-'Tet ~ C '

44 3SO/CAI%

ATTN: Ci)t i r i n
PO _,ox a 5
WarLiu.,y 'Oost:gt "nter
W 3r -1n e e w 3] Y:0 -St ?n t

H J S IICNC I
ATTN; CoL CI in s
PO 'iox 6
WorLw~y Post 31 Center
Los l n'etes r,

S0IAT
A TT : CoL y in

H a nI s 1

A TT Lt Cot 'l i--lenb r
Hans-on. 4F . * -1 1771_5 o -

T I

ATTN: Co3L Ueib
Hanscom A,n ,;, _1 I- "]

AFSTCI/3Y (Lt Ci Cettjcci)
Kirt t.ng A! ',.v ;7117

A F SPA C N, / , D
5TTN: lj Ro er Hunter
Petersin .Ac.V c- 4-;;L4

3SD/r,',
A T N Lt Cot Joe? Pou,;it

L os An et es F 7, c ,A , - o 6

FTC o J A.3'
1ATTN: ,13j D)rr n ivenscr. ft

faLcon .F3 C. A12

Navd. Air evetonment Ctr1
ATTN: Dr. M~ort *etersky
Code 3 D
Warm~inster PA 139 ?74

42 AFOTCI^VAH,- I
ATTN4: D'r. Saut CharLtcon

7 S D/ X T 1
ATTN: Lt Ct JOS'; ph TDIL?

Hanscom Af:- 0 4 .1731

3D IC/;N A1
ATTN: Cot Q. srrAL

U S A~H C C - i - 1

T T % Cao. L!.ry Terr ic

reutrvint 41'r l

A T T%: L tC L u4 Lr. n i c

I TrT.,4 wr. -*-.~3j'ounr
F.3tc:-in AF3 C.$ A-12

ArT T Mr. Ant n,)y F. So~yier
'Iri f fisS AF.3 NY 1 34'1#

AF S'.-ice lCon n/KFXx3
terso~n AF j C7 V;1I-Y'l

ACOTC/X:ID
ATTN: Cint 4rn-vjt

Di r-ctor NS3A (J
ATT~j: Georqp rvcr

Ft 5-r.4im ~. 'J~ '

ATTN C~' lot cii '.-?nj

Nati iniL Confijto!r f~ecuri 4y Cent ,r

Unisys ',ro/'Ptcrw 'nfo ;ys -,iv
ATTN: Lorraine '~artir,

CamyariLL*) CA o7^.li

14 it r C :r a
A T T D)ate 14. Joinson OISC 4,--47)

'lur~n~lt n P-

Secure Comiicatinj Technt~l CorD
ATTN: J. Thom~as Ha.igh

Arlen H4itts MN r.5112

MitrP Carp1
A T Td: -. Jshuai 'uttmin ("L-oIKj
ciurlinIton Ri
Redfor-I VA 0-.17- 2 L

i tre Carp1
A T T,: John J in-ri (' -47)

3 e-1f -nr!4 '4 A J17'3- 2:~

!)i ,A roorDr-itican1
ATTN: Dr. :;icm3ri Ptdtek
5C:-1A H-irris !:) te's Dr.
lti~ NY 4>1 3

%JationqiL SE-curity Ajv:ncy

Ft e1e1Z

'4dvj L Pose-ircm L jooratirv1
A TT'i - C-4rt L F LII .ie h &r f) c->
W 3sh DC I--,7 7;- 7 '

f(J. A rmy C 1mur) - ctr nic
Commanl

A T T 1: A %4 S i.L- '- C ~I
A TT'4: Joh'n 1. :;r 'uss
F t *4o nm 3u t h \iJ 7 7 3

IJAS4 i..,niLpy -ps-?,rcn Center1
fATTN- 4jcky utter (1. 1 .'1

Hampton VA >V

'ation L -ecurity -,.,vcy
ATTN: Michel-? Pittetti/ Z-37

Ft> avae 14 J

4ationiI Security A4ency
ATTN: Howard tainer/ -
9 S2 ';Iqe 7
VT Meade Mr) ?17 5

SPAW RcI~o1 %4 I

ATTN: -oD K nI ck i
WaIs h "IC 7 6 ! - 71-

Nav3L -esearcn .ro,) rt ry
ArTT.14 Jo3h n " cL in (C)J-? 5 c,4'

d ish £C ?%- 7S- ,9)

,S)/YFAF (vs 3w ,nJim)
w ri Pht-P t cerson -F-, 34 45 4 33-':3

N:aval les:arcn L oortory
Code 554%
1 TN- H. n.

Wasi iC oC375-%,A

A T TN Dr. William SchprLis

8rLinr,;ton VA U-P

DV)Pa/1ST-)

ATTN: Dr. Jick Kraier
14'- Wilson ,Lvj
Artin ton VA 2 2 2 9-23,

set JP11

ATTN: Iij CharLe J. cy 3 n

Carnegie telon University
OittsjurgjN PA 14213

DL-1 2

Defense Communications A-ency
ATTN: Dr. Cass tDeF'ore (Code ACA)
Adlvanced TechnoLogy Office

A T TN Lt Cot Jim Swee'ler
Penta~jonp Poomi IF14Q
Wish DC 20310

:ESDI lVSE

Truste-j Tnfornvieion Sy S t rS, 7nC.

A TTiC ;;i char J £'.Schdi n e.,r
7il* j-

wa~ vusi n']jt on P 14
e ~n w ao I) I -

T I nter n it ion i

Sjr , romp. 5ci L jilJ cin ?,j shl
33 r-dveflswon -v~

institut-- for -)fns- -*ndysis

1~ 3~ ue'r,, -j r -I 3t r.

3-c-ir-. Co-v- ut i T-cnnc l -).y C-)r.
ATTN : J-r r y . -4 .%r -,v

ArTrj: i4rten- ;her-o1a
r-)r: Co-no 3dc Ln/-'r-';i L~jnt

33n~ 3 vensw oI ,

T'p)' -r-)saac -ov-2,'';IdLoo)iv
ATT J: J jMaO

* z *,r ?:

x1

-j IIe- I P 4 ,2

.1= C oIl tr]te~ i 3y t. ,nl " , jtj

G. Co/ltratei1c System; 0)t

ATTN: Tim D-Ilik

For: 'r. Don "lrkint
17R7 3antry ;irk *;.. ; ox 1P.)
tjt-l etLL PA 1)L?

Alvi sory 5-3u,) on Lectr -)n Dpvic'3

a1 Va ick 3tr 2t, , 1! ':

New York NY I -14

AT)rl Ar. sinCn Cori

C/o 2ocKwell ntornat i -nL

125 c i e my hirk Loop
roLl)r lo Snri s

TT" ntr. r1'). '1k
AT r "a c

4 u n n -j c t)r; -s?.ircn 'iv

Sui t J)0

Y3 N 3yst ms '. T eChn. jj -;) y 1

A TTN, Ar . Oic v r3' ?

71 F .wcett 5

,onnie ,tc) ni el. I
--

71 7 rink L n 1t
wuntsvil e AL 15)l

'4rris Corp1

Me.,icurne FL -749'

AT T~1 ~er -ak ,,a L St r P

Colorilo Snritils V~ ;~

CtVYoutitiofli Louic,- Inc.1

AuStnn TX 71'7 _7

Gj e n Comouters Inc.
ArrT,.: !.oier Lcr4LL

o n.t P r y C A T --

0."''

I j Mriitn 44r-

'Jriv -)f aLi if t int 1 ~r i r i
-)T .nj t -r F r i'c # *

T TT , : D r e) IF c i r ?

Cjtv-r Zity

MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C I systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

.. n..===,= ,,,=. ,mnmmmnmm .mum] In nn l l I

